大肠杆菌tRNA的中文介绍
大肠杆菌(*Escherichia coli*)的转运RNA(tRNA)是蛋白质合成的核心分子,负责将氨基酸精准传递至核糖体,并根据mRNA的密码子序列组装多肽链。以下从结构、加工、基因组织及功能调控等方面详述其特性:
1. **分子结构与功能**
- **二级结构**:tRNA呈典型的三叶草结构,包含四个功能区域:接受茎(3'端携带氨基酸)、D环、反密码子环(含反密码子)和TΨC环。反密码子环中的三核苷酸序列(反密码子)与mRNA上的密码子互补配对,确保氨基酸的精准定位。
- **接受茎与氨基酰化**:接受茎的3'末端通过高能酯键连接特定氨基酸,这一过程由氨基酰-tRNA合成酶(AARS)催化。AARS分为I类和II类,分别将氨基酸连接到tRNA的2'-OH或3'-OH位,但溶液中两者可自发异构化。
2. **tRNA的加工过程**
- **前体转录与切割**:大肠杆菌的tRNA基因大多以多顺反子形式存在,与rRNA或蛋白质基因共转录。前体tRNA(pre-tRNA)需经历多步加工:
1. **5'端切割**:由核酶RNase P(含RNA亚基M1和蛋白质C5)切除5'前导序列。
2. **3'端修剪**:通过内切酶(如RNase E)和外切酶(如RNase T)逐步切除3'尾随序列,最终暴露或添加CCA序列。约30%的tRNA需通过tRNA核苷酸转移酶在3'端后加CCA,该酶无需模板即可依次添加C、C、A。
- **碱基修饰**:包括甲基化、硫代化等,增强tRNA稳定性和功能特异性。
3. **基因组织与表达调控**
- **基因分布**:大肠杆菌基因组含86个tRNA基因,编码40种成熟tRNA异型(对应20种氨基酸)。其中64个基因位于多顺反子转录单元,常与rRNA或蛋白基因共存;其余为单顺反子。
- **动态调控**:在氨基酸饥饿条件下,tRNA的稳定性显著下降,20分钟内大部分被降解,以快速响应代谢压力。此外,多腺苷酸化酶(PAP I)通过在前体tRNA的3'端添加短腺苷酸尾,与外切酶竞争,调控tRNA的成熟与稳定性。
4. **研究案例与技术进展**
- **亮氨酸tRNA(tRNA^Leu^)** :通过优化提取与纯化方法,研究者获得高纯度tRNA^Leu^,其3'和5'端存在额外核苷酸,且能特异性结合亮氨酸。
- **基因工程应用**:利用质粒pTrc99B-Leu1/Leu2在大肠杆菌中高效表达tRNA^Leu^,为研究tRNA与合成酶的相互作用提供材料。
---
Introduction to *Escherichia coli* tRNA (English Version)
The
transfer RNA (tRNA) of *Escherichia coli* serves as a molecular adaptor
that links mRNA codons to amino acids during protein synthesis. Below
is a comprehensive overview of its structure, biogenesis, and functional
regulation:
1. **Molecular Architecture and Functional Domains**
-
**Secondary Structure**: tRNA adopts a cloverleaf-like fold with four
domains: the acceptor stem (3' end for amino acid attachment), D-loop,
anticodon loop (containing the anticodon triplet), and TΨC loop. The
anticodon pairs with mRNA codons via complementary base pairing.
-
**Aminoacylation**: Aminoacyl-tRNA synthetases (AARSs) catalyze the
attachment of specific amino acids to the 3'-OH or 2'-OH of the terminal
ribose in the acceptor stem. Class I and II AARSs differ in their
binding modes, but spontaneous transacylation between 2' and 3' isomers
occurs in solution.
2. **tRNA Maturation and Processing**
-
**Precursor Cleavage**: Most tRNA genes are transcribed as
polycistronic units alongside rRNA or protein-coding genes. Key
processing steps include:
1. **5' End Trimming**: Catalyzed by RNase P, a ribozyme composed of an RNA subunit (M1) and a protein subunit (C5).
2. **3' End Maturation**: Achieved via endonucleases (e.g., RNase E)
and exonucleases (e.g., RNase T). For some tRNAs, the 3' CCA sequence is
added post-transcriptionally by tRNA nucleotidyltransferase, which
sequentially incorporates CTP, CTP, and ATP without a template.
-
**Nucleotide Modifications**: Chemical modifications (e.g., methylation,
thiolation) enhance tRNA stability and decoding accuracy.
3. **Genomic Organization and Regulatory Mechanisms**
-
**Gene Clusters**: The *E. coli* genome harbors 86 tRNA genes encoding
40 mature isoacceptors. Approximately 75% reside in polycistronic
operons, while others are monocistronic.
- **Dynamic Regulation**:
Under amino acid starvation, tRNAs undergo rapid degradation within 20
minutes, reflecting their role in metabolic adaptation. Polyadenylation
by PAP I competes with 3'→5' exonucleases, modulating tRNA stability and
functional availability.
4. **Research Advances and Applications**
-
**Leucine tRNA (tRNA^Leu^)**: High-purity tRNA^Leu^ was isolated with
unique terminal nucleotides, demonstrating specific leucine-binding
capacity.
- **Genetic Engineering**: Plasmid-based overexpression
systems (e.g., pTrc99B-Leu1/Leu2) enable large-scale production of
tRNA^Leu^, facilitating studies on tRNA-synthetase interactions.
---
特别提醒:
1. 试剂使用干冰填充运输,收到货后及时放入-80℃储存。
2. 避免反复冻融,否则会对试剂活性造成一定影响。